Consider a system which may be in various physical states. For simplicity, assume thect these states are discrete and may be labelled 1, 2, 3, ...

Let X be an observable which depends on the state of the system. $X_{1}, X_{2}, X_{3}, \ldots$ - the respective values.

Daring a long time T, the system passes through all of these states. We conduct a series of N measurements, separated by large equal intervals of time

$$
w_{i}=\lim _{N \rightarrow \infty} \frac{N_{i}}{N}
$$

- the prob-ty of state i Instead, me may unite

$$
w_{i}=\lim _{T \rightarrow \infty} \frac{t_{i}}{T}
$$

It is essential that the environment is stationary. Our considederation usuld not woke, for example, for an infinity expanding gas Quite otter, one deals with continuous quantities X
quantities X
Then one may define the probability $\omega(x, x+d x)$ that x if in the interval $(x, x+d x)$

$$
\begin{aligned}
& x+d x) \text { that } \\
& w(x, x+d x)=\lim _{T \rightarrow \infty} \frac{d t(x, x+d x)}{T} \\
& d w_{x}=\rho(x) d x
\end{aligned}
$$

Probability density (distribution $f-n$)
often, different definitions are used. instead of considering the change of the state of a system in time, one may consider a number of copies of the same system whose states are distributed randomly They are called statistical ensemble

$$
w_{i}=\lim _{n \rightarrow \infty} \frac{n_{i}}{n} \longleftarrow \# \text { systems in state } i
$$

Engodicity: ensembe average $=$ time average
Basic properties of probability densities $w_{i+k}=w_{i}+w_{k}$ (prove by considering either an ensemble of tine intervals)

- it k
either an ensemble w.

$$
\sum_{i} w_{i}=1
$$

The continuous version: $\int \rho(x) d x=1$
The prob-ty that X lies between a and b

$$
\begin{aligned}
& \text { The probity } \\
& w(a<x<b)=\int_{a}^{b} \rho(x) d x
\end{aligned}
$$

If we choose another variable Y and there is one-to-one correspondence $X \leftrightarrow Y$ between X and Y

$$
\begin{gathered}
Y=Y(X) \\
w(Y(a)<Y<Y(b))=\int_{Y(a)}^{Y(b)} \underbrace{\rho(X(Y))\left|\frac{\partial x}{\partial Y}\right|}_{\rho_{Y}(Y)} d Y
\end{gathered}
$$

$$
\rho_{x}(X)=\rho_{Y}(Y)\left|\frac{\partial x}{\partial r}\right|
$$

This may be generalised to the case of an arbitrary number of variables

$$
\int \rho\left(x_{1}, . ., x_{n}\right) d x_{1} \ldots d x_{n}
$$

when charging variables,

$$
\begin{aligned}
& \text { when charging } \\
& \rho_{x}\left(X_{1}, \ldots, X_{n}\right)=\rho_{Y}\left(Y_{1}, \ldots, Y_{n}\right)\left|\frac{\partial\left(X_{1}, \ldots, X_{n}\right)}{\partial\left(Y_{1}, \ldots, Y_{n}\right)}\right| \\
& \text { impose: }
\end{aligned}
$$

costictical, independence:

Statistical independence:
$\rho(X) d X \rho(Y) d Y=w(X, X+d X ; Y, Y+d Y)$ $-X$ and Y are independent variables $w_{i} k=\omega_{i} w_{k}$ - the discrete version of it

Example: the probability density of a molecule in a gas in a closed volume V

$$
\begin{aligned}
& \rho(\vec{r})=\frac{1}{V} \\
& w_{v}=\int \rho(\vec{r}) d \vec{r}
\end{aligned}
$$

The average value of an observable

$$
\begin{aligned}
& \bar{X} \equiv\langle x\rangle=\int x \rho(x) d x \\
& \bar{X}+\bar{Y}=\bar{X}+\bar{Y}
\end{aligned}
$$

For independent quantities, $\overline{X Y}=\bar{X} \bar{Y}$

